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Abstract

In this paper we present a genetic algorithm-based heuristic for solving the set partitioning problem (SPP). The
SPP is an important combinatorial optimisation problem used by many airlines as a mathematical model for flight
crew scheduling.

A key feature of the SPP is that it is a highly constrained problem, all constraints being equalities. New genetic
algorithm (GA) components: separate fitness and unfitness scores, adaptive mutation, matching selection and
ranking replacement, are introduced to enable a GA to effectively handle such constraints. These components are
generalisable to any GA for constrained problems.

We present a steady-state GA in conjunction with a specialised heuristic improvement operator for solving the
SPP. The performance of our algorithm is evaluated on a large set of real-world problems. Computational results
show that the genetic algorithm-based heuristic is capable of producing high-quality solutions.
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1. Introduction

1.1. The set partitioning problem

The set partitioning problem (SPP) is the problem of exactly covering the rows of am-row,
n-column, zero-one matrix (ai j ) by a subset of the columns at minimal cost. Defining
xj = 1 if column j (with costcj ) is in the solution andxj = 0 otherwise, the SPP is

minimise
n∑

j=1

cj x j , (1)

subject to
n∑

j=1

ai j x j = 1, i = 1, . . . ,m, (2)

xj ∈ {0, 1}, j = 1, . . . ,n, (3)

To ease the notation defineI ={1, . . . ,m} the set of rows,J={1, . . . ,n} the set of columns,
αi ={ j |ai j = 1, j ∈ J} the set of columns that cover rowi , andβ j ={i |ai j = 1, i ∈ I } the
set of rows covered by columnj .
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The set partitioning problem has been studied extensively over the years because of
its many important applications (Balas and Padberg (1979)). The best-known application
of the SPP is airline crew scheduling (Arabeyre et al. (1969), Baker and Fisher (1981),
Gershkoff (1989), Hoffman and Padberg (1993), Marsten and Shepardson (1981)). In this
context, each row (i = 1, . . . ,m) represents a flight leg ( a takeoff and landing) that must
be flown. The columns (j = 1, . . . ,n) represent feasible round-trip rotations for a crew
(i.e., a sequence of flight legs for a crew that begin and end at individual base locations
and that conform to all applicable work rules). Associated with each rotation is a costcj .
The matrix(ai j )m×n is constructed asai j = 1 if flight leg i is covered by rotationj,ai j = 0
otherwise. The objective of the crew scheduling problem is to find the “best” collection of
rotations such that each flight leg is covered byexactlyone rotation.

For some practical crew scheduling problems, due to flight assignments, union rules and
other factors, some additional constraints are imposed. These constraints are calledbase
constraintsand have the formdl ≤ ∑ j∈B dj x j ≤ du, wheredj > 0 andB⊆ J. Also in some
applications overcovering (rewriting Eq. (2) as≥) is allowed. This form of the problem is
called the set covering problem. In this paper, we will only consider the pure set partitioning
problem as defined by Eqs. (1)–(3).

2. Related work

Because of the importance of the SPP, a number of algorithms have been developed. These
can be classified into two categories: exact algorithms which attempt to solve the SPP to
optimality, and heuristic algorithms which try to find “good” solutions quickly.

The starting point for most exact solution algorithms is to solve the linear programming
(LP) relaxation of the SPP (i.e., replace (3) by 0≤ xj ≤ 1, j = 1, . . . ,n). A number of
authors (Gershkoff (1989), Marsten and Shepardson (1981)) have noted that for many
“small” SPP problems, the solution to the LP relaxation is either all integer, in which
case it is also the optimal integer solution, or has only a few fractional values which can be
easily resolved. However, as the size of the problem increases, fractional values occur more
frequently and simple round-up methods are likely to fail. A method based on cutting planes
was proposed by Balas and Padberg (1976). They noted that cutting plane algorithms were
moderately successful even while using general purpose cuts and without taking advantage
of any special knowledge of the SPP polytope (see also Balas and Padberg (1979)).

Another type of exact method is the use of the tree search (branch-and-bound). Various
bounding strategies, including LP and Lagrangean relaxation, have been exploited. The
algorithm described in Marsten (1974) is an LP-based algorithm that exploits the structure
of the problem within a branch-and-bound tree. Computational results were reported for
several large problems using real data. An improved version of Marsten’s algorithm was
given by Marsten and Shepardson (1981). As pointed out in both papers, solving the
highly degenerate LP relaxation of the SPP was the computational bottleneck at that time.
However, recent computational advances in LP algorithms have overcome such difficulties,
and the LP relaxation of very large SPP instances can now be solved relatively quickly.

Another tree search method was proposed by Fisher and Kedia (1990), who used continu-
ous adaptations of the greedy and three-opt methods applied to the dual of the LP relaxation
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of the problem to provide lower bounds. Chan and Yano (1992) presented a tree search
algorithm based on a lower bound derived from a multiplier adjustment heuristic for the
dual of the LP relaxation of the problem. Harche and Thompson (1994) presented an exact
algorithm based on a new method, called the column subtraction (or row sum) method,
which is capable of solving large sparse instances of set covering, packing and partitioning
problems. The most successful optimal solution algorithm to date appears to be the work
of Hoffman and Padberg (1993). They presented an exact algorithm based on branch and
cut (which involves solving the LP relaxation of the problem and incorporating cuts derived
from polyhedral considerations) and reported optimal solutions for a large set of real-world
set partitioning problems, with sizes up to 145 rows and 1,053,137 columns. Other recent
published work relating to the SPP appears in (Eben-Chaime, Tovey, andAmmons (1996),
Sherali and Lee (1996), Tasi (1995)).

There have been relatively few heuristic solution algorithms for the SPP in the literature.
This is because the SPP is a highly constrained problem and thus finding any feasible so-
lution to a SPP is itself a difficult problem. Ryan and Falkner (1988) provided a method
of obtaining a good feasible solution by imposing additional structure, derived from the
real-world problems but not already implicit in the mathematical model. They observed that
this additional structure not only reduces the size of the feasible region, but also improves
the integer properties of the LP solution. Atamt¨urk, Nemhauser, and Savelsberg (1995) pre-
sented a heuristic algorithm incorporating problem reduction, linear programming, cutting
planes and a Lagrangean dual procedure based upon the work of Wedelin (1995a,b).

Recently, Levine (1994, 1996) experimented with a parallel genetic algorithm and applied
it to the SPP. His genetic algorithm (GA) is based on an island model where a GA is used
with multiple independent subpopulations (each run on a different processor) and highly fit
individuals occasionally migrate between the subpopulations. His computational study was
conducted on a subset of the problems used by Hoffman and Padberg (1993). Although his
algorithm was capable of finding optimal solutions for some problems having up to a few
thousand columns, it had difficulty finding feasible solutions for problems having many
rows.

In this paper we attempt to apply a GA to the SPP based on the following motivations.
Firstly, we are particularly interested in the design of a GA for highly constrained problems.
The SPP, with all constraints being equalities, is a challenging example of such a problem.
Secondly, the parallel GA proposed by Levine has not produced completely satisfactory
results in comparison with other more successful methods. One of the limitations of his GA
was its inability to find feasible solutions for some problems. We recognise that this was
most likely due to the use of a penalty function in his GA. We believe that, with a suitable
approach, a GA can be an effective heuristic for solving the SPP. Lastly, since heuristic
algorithms for the SPP are almost non-existent, we hope to develop GAs as an alternative
approach to exact methods for the SPP.

The paper is organised as follows. In Section 3 the basic steps of a simple GA are
described. In Section 4 the GA-based heuristic for the SPP is presented. In Section 5
computational results are given. Finally in Section 6 some conclusions are drawn.
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3. Genetic algorithms

A genetic algorithm can be understood as an “intelligent” probabilistic search algorithm
which can be applied to a variety of combinatorial optimisation problems (Reeves (1993)).
The theoretical foundations of GAs were originally developed by Holland (1975). GAs
are based on the evolutionary process of biological organisms in nature. During the course
of evolution, natural populations evolve according to the principles of natural selection
and “survival of the fittest”. Individuals which are more successful in adapting to their
environment will have a better chance of surviving and reproducing, whilst individuals
which are less fit will be eliminated. This means that thegenesfrom the highly fit individuals
will spread to an increasing number of individuals in each successive generation. The
combination of good characteristics from highly adapted ancestors may produce even more
fit offspring. In this way, species evolve to become more and more well adapted to their
environment.

A GA simulates these processes by taking an initial population of individuals and ap-
plying genetic operators in each reproduction. In optimisation terms, each individual in
the population is encoded into a string orchromosomewhich represents a possiblesolu-
tion to a given problem. The fitness of an individual is evaluated with respect to a given
objective function. Highly fit individuals orsolutionsare given opportunities to reproduce
by exchanging pieces of their genetic information, in acrossoverprocedure, with other
highly fit individuals. This produces new “offspring” solutions (i.e.,children), which share
some characteristics taken from both parents. Mutation is often applied after crossover
by altering some genes in the strings. The offspring can either replace the whole popula-
tion (generationalapproach) or replace less fit individuals (steady-stateapproach). This
evaluation-selection-reproduction cycle is repeated until a satisfactory solution is found.
The basic steps of a simple GA are shown below.

Generate an initial population;
Evaluate fitness of individuals in the population;
repeat

Select parents from the population;
Recombine (mate) parents to produce children;
Mutate children;
Evaluate fitness of the children;
Replace some or all of the population by the children;

until a satisfactory solution has been found;

A more comprehensive overview of GAs can be found in (B¨ack, Fogel, and Michalewicz
(1997), Beasley, Bull, and Martin (1993a,b), Goldberg (1989), Mitchell (1996), Reeves
(1993)).

4. A GA for the SPP

One of the conclusions we have drawn from our previous work on GAs (Beasley and Chu
(1996), Chu (1997), Chu and Beasley (1997, 1998)) is that, in order to successfully apply
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GAs to constrained combinatorial optimisation problems (such as the SPP), a GA that
uses only the traditional operators (crossover and mutation) would appear to be ineffec-
tive because of the limited power of these general-purpose operators to generate feasible
solutions. However, we can apply the philosophy of GAs to such problems by choosing
a natural representation of solutions, by defining properties based on this representation,
and by constructing problem-specific operators which manipulate the solution structures
so as to improve the quality and/or feasibility of the solutions. Although the disadvantage
of this type of approach is that the GA becomes domain-dependent, we believe that this is
the best way, if not the only way, to construct GAs which can be competitive with existing
algorithms that utilise domain-specific knowledge. These modifications to the basic GA
framework in our algorithm for the SPP are described below. In the following discussion
we will use the terms “individuals”, “solutions” and “strings” interchangeably.

4.1. Representation and fitness function

The first step in designing a genetic algorithm for a particular problem is to devise a suitable
representation scheme. The usual 0-1 binary representation is an obvious choice for the
SPP since it represents the underlying 0-1 integer variables. Hence the SPP can be coded as
a string of lengthn over the binary alphabet{0, 1}, representing the underlying 0-1 integer
variables. In this representation, a bit in the string is associated with each column. Thej th
bit, S[ j ], is 1 if column j is in the solution and 0 otherwise (see figure 1).

Note here that Levine (1994, 1996) also used the same representation in his GA for
the SPP. This binary representation does not ensure the feasibility of individuals when
the traditional crossover and mutation operators are applied. Note here that in the SPP, a
constrainti is infeasible if and only if rowi is not being covered by exactly one column
(i.e.,wi 6= 1 wherewi =

∑
j∈J ai j S[ j ]).

The main design issue of the GA then becomes how should the constraints be embraced,
and if infeasible solutions are allowed, how should they be evaluated? There are three stan-
dard ways (Davis and Steenstrup (1987), Michalewicz (1995)) of dealing with constraints
and infeasible solutions in GAs:

1. to use a representation that automatically ensures that all solutions are feasible,
2. to design a heuristic operator (often called arepair operator) which guarantees to trans-

form any infeasible solution into a feasible solution,
3. to apply a penalty function (Goldberg (1989), Levine (1994, 1996), Powell and Skolnick

(1993), Richardson et al. (1989), Smith and Tate (1993)) to penalise the fitness of any
infeasible solution without distorting the fitness landscape.

Figure 1. Binary representation of a SPP solution.
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The first of these approaches does not appear to be applicable to the SPP. As to the second
of these approaches, in our previous work (Beasley and Chu (1996), Chu and Beasley (1998))
we have considered problems for which effective repair operators that ensure satisfaction of
all the constraints can be easily developed, and consequently this simplified the evaluation
of solutions. Unfortunately, in the case of the SPP, an efficient (polynomial-time) algorithm
which guarantees to transform infeasible solutions into feasible solutions is not known to
exist. Hence this approach too does not appear to be applicable to the SPP.

The third of these approaches allows infeasible individuals to be generated but penalises
them by adding a penalty term to the fitness function such that the fitnessf (S) of a solution
S is given by f (S)= h(S)+ p(S), whereh(S) andp(S) are the objective and penalty terms
for S, respectively.

Levine (1994) investigated three penalty terms for the SPP:

• Thecountinfz penalty term: p(S)= ∑i∈I ,wi 6=1 λi , where the scalar weightλi is chosen
(empirically) to beλi = maxj∈αi {cj }. This penalty term penalises each violated constraint
by a fixed amount, regardless of how much the constraint is violated.
• The linear penalty term: p(S)= ∑i∈I ,wi 6=1 λi |wi − 1|. This penalty term takes into

account the magnitude of each constraint violation.
• The Smith-Tate(Smith and Tate (1993))penalty term: p(S)= ∑i∈I ,wi 6=1(zf − zb)/2

wherezf is the bestfeasibleobjective function value found so far andzb is the best
(feasible or infeasible) objective function value found so far. The aim of this penalty
term is to favour solutions which are near a feasible solution over highly fit solutions
which are far from any feasible solution. The distance from feasibility is measured by
the number of constraints violated.

Experiments conducted by Levine showed mixed results for these three penalty terms. In
fact, the penalty method performed poorly, managing to produce optimal solutions in only a
small proportion of trials for small-sized problems, and failing to produce feasible solutions
for some large-sized problems. Levine (1994) concluded that much work remained to be
done in designing better penalty functions. Michalewicz (1995) too concluded that it is
difficult to design penalty functions. He also highlighted the lack of constraint handling
techniques in GAs.

Given a problem, such as the SPP, for which a repair operator and appropriate penalty
function are difficult to construct, we propose, in this paper, a new alternative approach for
processing infeasible solutions. The weakness of the penalty methods is that the optimal
penalty coefficient valuesλi may be highly data-dependent. Hence it is unlikely that a set of
parameter values will be useful for all problems. Moreover, it is not clear whether, with the
penalty approach, the selection/replacement mechanisms should favour unfit but feasible
individuals or highly fit but infeasible individuals. Therefore, instead of combining the
objective and penalty terms into a single fitness measure, we redefine fitness in a way which
involves separating the single fitness measure into two: one measure is still calledfitness
but the other measure is calledunfitness. Each individual can then be represented by a pair
of values that measure the objective function value (fitness) and the degree of infeasibility
(unfitness) independently, obviating the need for the scaling factorsλi .
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The fitnessf (S) of an individualS for the SPP is chosen to be equal to its objective
function value, calculated byf (S)=∑ j∈J cj S[ j ]. Note that thelower the fitness value
themorefit the solution is.

The unfitnessu(S) of an individualS measures the degree of infeasibility (in relative
terms) and for the SPP we have chosen to define it asu(S)= ∑i∈Iwi 6=1|wi−1|. Recall thatwi

measures the number of times rowi is being covered. The absolute value here implies that an
individual is feasible if and only ifu(S)= 0 and infeasible ifu(S)>0. Defining the unfitness
to be at a minimum of zero if and only if the solution is feasible seems a natural approach.

Note that we would stress here that there is no one unique way of defining an unfitness
score for the SPP (or for any other problem) and alternative expressions are equally valid,
e.g.,u(S)= ∑i∈Iwi 6=1|wi − 1|2 could be used to measure unfitness.

There are several advantages to using separate fitness and unfitness scores instead of a
single penalty-adjusted fitness score. Firstly, it eliminates the difficult task of determining
the appropriateλi values. Secondly, it transforms the “fitness landscape” from a one-
dimensional line (fitness only) into a two-dimensional plane (fitness and unfitness axes),
thus allowing the point which a solution represents to be identified more precisely. Finally,
based on the fitness and unfitness scores, we can divide the population into several subgroups
of distinct characteristics which can be useful in deciding to which search region the GA
should be directed during the selection and replacement processes. The details of the design
of this scheme are discussed in Section 4.5.

We should stress here that although the idea of separate fitness (objective function) and
unfitness (constraint violation) values are being presented in the context of the SPP they are
directly applicable toanyGA for constrained problems.

4.2. Crossover and mutation operators

The crossover operator takes bits from each parent string and “combines” them to create a
child string. The idea is that by creating new strings from substrings of fit parent strings, new
and promising areas of the search space will be explored. Many crossover techniques exist
in the literature. However, GA researchers (Spears and DeJong (1991), Syswerda (1989))
have given evidence to support the claim that uniform crossover has a better recombination
potential than do other crossover operators, such as the classical one-point and two-point
crossover operators. The uniform crossover operator works as follows. LetP1 and P2

be the parent stringsP1[1], . . . , P1[n] and P2[1], . . . , P2[n], respectively. Then the child
solutionC is created by settingC[ j ]= P1[ j ] with probability 0.5,C[ j ]= P2[ j ] otherwise,
i.e., for each bitj a random choice is made as to which parent will contribute its bit (P1[ j ]
or P2[ j ]) to the child.

Mutation is usually applied to each child after crossover. It works byinverting M
randomly chosen bits in a string whereM is experimentally determined. Mutation is
generally seen as an operator which provides a small amount of random search. It also
helps to guard against loss of valuable genetic information by reintroducing information
lost due to premature convergence and thereby expands the search space.

Two types of mutation procedure are used in our GA. The first type is calledstatic
mutation, which has a constant mutation rateMs throughout the GA search. The second



P1: KRK-BRT/AVN-PNI-DKS P2: BRT/AVN/UKD P3: MAS/AVN/UKD QC: BKP

Journal of Heuristics KL659-02-CHU October 27, 1998 18:55

330 CHU AND BEASLEY

type is calledadaptive mutation, which mutates only certain bits at each iteration based
on some heuristic rules. We propose the use of adaptive mutation for the following
reasons.

As mentioned earlier, the SPP is a highly constrained problem and a feasible solution
is often difficult to construct heuristically. Our initial experimental results, as well as the
results reported by Levine, indicated that for some difficult problems, the GA may fail to
evolve even a single feasible solution after a large number of iterations. This problem arises
because an attempt to satisfy a particular constraint may introduce infeasibilities into other
currently feasible constraints. As the population begins to converge, the GA will gradually
evolve a “dominating” set of columns which favour certain constraints at the expense of
others. We call this outcomepremature column convergence. The negative effect of this
outcome is that some constraints (rows) may never be satisfied, and the likelihood that a
feasible solution will emerge is severely diminished. The problem of premature column
convergence may also arise naturally due to the fact that some constraints are easier to
satisfy than others.

An adaptive mutation procedure is designed to counter these natural biases, hence prevent-
ing premature column convergence. The idea is to prevent the loss of certain columns that
may result in permanent violation of some constraints. By monitoring population statistics
with respect to constraint violation/satisfaction, we could bring back these columns through
biased mutation. The details of this procedure are as follows:

1. At each GA iteration and for each constraint (row)i , record the number of individuals (de-
noted byηi ) in which constrainti is violated. Hereηi =

∑N
k= 1 min[1, |∑ j∈J ai j Sk[ j ]−

1|], whereN is the size of the population and the second term in this minimisation is
zero if constrainti is satisfied in individualSk.

2. For each constrainti , if ηi ≥ εN(0 < ε < 1), then setMa(1 ≤ Ma ≤ |αi |) randomly
chosen bits (columns) fromαi to one in the child string.

In step 1, information on the extent of constraint violation is collected. In step 2, it
is conjectured that if the number of individuals which violate constrainti exceeds some
threshold, i.e.,ηi ≥ εN, it is likely that the population is moving toward premature column
convergence because individuals which satisfy constrainti are “dying out”. In order to
re-introduce solutions which satisfy constrainti into the population, columns which cover
row i are added into the child string to “compete” with other columns. This is done by
settingMa bits (of those that cover rowi ) in the child string to one, whereMa is arbitrarily
chosen.

Limited computational experience showed that a low static mutation rate (2<Ms< 5)
was preferable to a higher mutation rate (Ms> 5) and that within the low range the quality
of the solution was not particularly sensitive to the rate. We setMs= 3 in our GA. We also
set the adaptive mutation parametersε andMa to be 0.5 and 5, respectively. These mean
that when more than 50% of the population violate constrainti , adaptive mutation will take
place in the child string with a mutation rateMa= 5. These values have experimentally
been shown to be quite satisfactory.

We should stress here that although the idea of adaptive mutation is being presented in
the context of the SPP the idea is generalisable toanyGA for constrained problems. As
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a general approach we simply (as in step 1 above) collect information on the extent of
constraint violations and then (as in step 2 above) introduce appropriate variables into the
solution in an attempt to encourage constraint satisfaction.

4.3. Heuristic improvement operator

The child solutions generated by the crossover and mutation operators are likely to be
infeasible, i.e., some rows may be under-covered and some rows may be over-covered.
This led us to develop an additional improvement operator to be incorporated into the GA.
The aim of this operator is to improve the solution by moving to a near feasible, or possibly
feasible, solution.

To accomplish this goal, we designed a heuristic improvement operator that includes
two basic procedures: one is called DROP and the other is called ADD. The role of the
DROP procedure is to identify allover-coveredrows and randomly remove columns until
all rows are covered byat mostone column. The role of the ADD procedure is to identify all
under-coveredrows and add columns such that as many under-covered rows as possible can
be covered without causing any other rows to be over-covered. The heuristic improvement
operator is presented in Algorithm 1.

Algorithm 1 Heuristic improvement operator for the SPP

Let :

S= the set of columns in a solution,
U = the set of uncovered rows,
wi = the number of columns that cover rowi, i ∈ I in S.

1: initialisewi := |αi ∩ S|, ∀i ∈ I ;
2: setT := S; /∗ T is a dummy set∗/
3: repeat/∗ DROP procedure∗/
4: randomly select a columnj, j ∈ T and setT← T − j ;
5: if wi ≥ 2, for anyi ∈β j then
6: setS← S− j ; setwi ←wi − 1, ∀i ∈β j ;
7: end if
8: until T = ∅;
9: initialiseU := {i |wi = 0, ∀i ∈ I };

10: setV :=U ; /∗ V is a dummy set∗/
11: repeat/∗ ADD procedure∗/
12: randomly select a rowi ∈V and setV←V − i ;
13: search for the columnj ∈αi that satisfiesβ j ⊆ U , and minimisescj /|β j |;
14: if j existsthen
15: setS← S+ j ; setwi ← wi + 1, ∀i ∈β j ; setU ← U − β j andV ← V − β j ;
16: end if
17: until V = ∅.

szh
Highlight
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In Algorithm 1, steps 3–8 (DROP) attempt to make over-covered rows (i.e., thosei
such thatwi ≥ 2) feasible by setting all but one of the columnsj ∈αi ∩ S to zero. Notice
here that columns are inspected for exclusion in a random fashion rather than in any fixed
order (such as by considering higher-cost columns first). The reasoning is to minimise
the possibility of biasing certain columns that may lead to premature column convergence.
In steps 11–17 (ADD), columns are added back to the solution such that as many under-
covered rows as possible are being covered without introducing over-coverage into other
rows. This procedure examines each under-covered row randomly so that biases toward any
particular rows are minimised. But the inclusion of the columns is done in a greedy manner
by considering columns in decreasing cost-ratiocj /|β j |. Note that this procedure allows
only under-coveredrows, but not over-covered rows, to exist in the solution. Although
slightly over-covered solutions may also be useful, we decided not to further increase the
complexity of the procedure by additionally searching for over-covered solutions that may
potentially give lower unfitness values.

Levine (1994, 1996) in his GA for the SPP applied a different heuristic improvement
operator to the one we have presented above to a single randomly selected member of the
population at each iteration. By contrast we apply our operator to each child solution.

4.4. Parent selection method

Parent selection is the task of assigning reproductive opportunities to each individual in the
population based on their relative fitnesses. Since each individual possesses both fitness
and unfitness scores, the parent selection criterion may be based on either the fitness, the
unfitness, or a combination of both. The difficulties with the first two criteria are that, at the
initial stages of the GA, individuals which have lower fitness scores (more fit) tend to have
higher unfitness scores (more infeasible) and vice-versa. Thus, if we favour selection on
more fit individuals, we are likely to select parents which are mostly infeasible. This may
not help the GA in generating feasible offspring. On the other hand, if we favour selection
on feasible, but less fit individuals, we may find that whilst feasibility may improve the
solution quality will suffer. In order to balance this tradeoff, a combination of the fitness
and unfitness values (i.e.,f (Si ) + λu(Si )) may be a better selection basis. But again, the
problem with this approach is that an appropriate scalarλ, similar to those required by the
penalty method, may be difficult to determine.

The shortcomings of these selection methods motivated us to develop an alternative se-
lection method, called thematching selectionmethod. The main objective of this method
is to select parents such that, combining them, would result in an improvement in feasi-
bility without undermining solution quality. This method incorporates problem-specific
knowledge which takes into consideration the row coverage of each candidate parent. In
a matching selection, the first parentP1 is selected using a binary tournament (Goldberg
(1989)) based onfitness. The second parentP2 is then selected so as to give a maximum
compatibilityscore. A compatibility score between parentP1 and any candidate second
parentSi (Si 6= P1) from the population is defined byδ(P1, Si )= |RP1 ∪ RSi | − |RP1 ∩ RSi |,
whereRP1 andRSi are the set of rows covered byP1 andSi , respectively. If the maximum
compatibility score is scored by more than one member, then the tie-breaking rule is to
select the one with the lowest fitness value.
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The logic here is that we would like the two parents together to cover as many rows as
possible (i.e., a high|RP1 ∪ RSi |) and with as few covered rows in common as possible (i.e.,
a low |RP1 ∩ RSi |).

One exception to the matching rule is when the first parentP1 is a feasible solution
(u(P1)= 0), then the second parentP2 is selected using the tournament selection method
based on fitness instead of the matching method. This is because computational results
indicated that a feasible child can be constructed relatively easily if one or both parents
are feasible. So when the population largely consists of feasible individuals, the parent
selection strategy is then re-directed toward improving fitness rather than feasibility.

One issue here is that using matching selection we try and identify two parents who
together cover the rows “well”, as defined by the compatibility score. However the crossover
used (uniform crossover see Section 4.2) will, via the columns it chooses, most likely destroy
this coverage. The heuristic improvement operator though, which is applied to each child
after crossover, is designed to achieve good row coverage, especially if started from a child
solution which already contains a set of columns that contributed to good row coverage.
This issue is also addressed in Section 5.3.2 below.

We should stress here that although the idea of matching selection is being presented in
the context of the SPP the idea is generalisable toanyGA for constrained problems. As a
general approach we simply (as above) select the first parent in a standard way but select
the second parent based upon a compatibility score defined with regard to the constraints
in the problem under investigation.

4.5. Population replacement scheme

4.5.1. Ranking replacement.In order to insert the newly generated child solution into
the population, room must be made for the child, which means we must have a method for
selecting a population member to be deleted. The ideal performance of any replacement
strategy is that members having both fitness and unfitness valuessmaller than the popu-
lation average will, on average, be represented in the new population to a greater extent.
Likewise, members with above-average fitness and unfitness should decrease in the popu-
lation. However, this ideal performance may not be achieved by any simple replacement
mechanism since a trade-off between fitness and unfitness values generally occurs. To see
this consider two simple, but less than ideal, replacement strategies:

1. Replace the member with the worstfitness.
2. Replace the member with the worstunfitness.

Clearly, the first replacement strategy based on fitness has the effect of favouring the quality
(fitness score) over feasibility (unfitness score) of the individuals. This may not be an ideal
strategy since individuals which have lower fitness values tend to have higher unfitness
values initially. Thus, eliminating unfit (but maybe feasible) individuals early in the run
may force the population to converge toward infeasibility prematurely. On the other hand,
the second strategy based on unfitness favours feasible individuals over fit individuals.
Whilst feasibility of the population may improve, hence increasing the chance of finding
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Figure 2. Population subgroups and the fitness-unfitness landscape.

feasible solutions, it may also reduce the probability that the population will converge to
high-quality (or optimal) solutions because the average fitness may increase rather than
decrease over time.

In order to balance these trade-offs between fitness and unfitness, we designed a new
generalised replacement scheme, called theranking replacementmethod, that takes into
account both the fitness and unfitness scores when selecting a population member for
deletion. This method is described as follows.

To set up a ranking replacement, the population is first divided into four mutually exclu-
sive subgroupswith respect to the child, see figure 2. Figure 2 shows the fitness-unfitness
landscape of the population where thex and y axes represent unfitness and fitness, re-
spectively. Each point in the plot represents an individual (solution) whose coordinate is
provided by the individual’s fitness and unfitness scores (note that the higher the fitness
and unfitness scores for a solution, the worse the solution is). The populationP is hence
separated into four disjoint subgroups with respect to the fitness and unfitness of the child.
These four subgroups are defined as follows.

G1 = {Si | f (Si ) ≥ f (C), u(Si ) ≥ u(C), Si ∈ P},
G2 = {Si | f (Si ) < f (C), u(Si ) ≥ u(C), Si ∈ P},
G3 = {Si | f (Si ) ≥ f (C), u(Si ) < u(C), Si ∈ P},
G4 = {Si | f (Si ) < f (C), u(Si ) < u(C), Si ∈ P}.

By considering the subgroups in the order: firstG1 thenG2 thenG3 thenG4, a child
in the ranking replacement scheme will replace a selected member of thefirst non-empty
subgroup in this order. This implies that a child solution will first try to replace a solution in
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subgroupG1, which has higher fitness and unfitness scores than the child’s, thus improving
both the average fitness and unfitness of the whole population. If subgroupG1 is empty,
then subgroupG2 is considered next, followed byG3 andG4 in that order. The reason for
considering subgroupG2 prior to G3 is that for problems for which feasible solutions are
harder to find, the priority is to first search for a feasible solution before trying to improve
the fitness (or the quality) of the solution. Therefore, by eliminating solutions in subgroups
G1 andG2 first, the average unfitness of the population will be reduced (i.e., the population
will shift towards the fitness axis).

In any subgroup, the member selected for replacement by the child is the member with
theworst unfitness(ties broken by worst fitness). Note that when replacing a solution, care
must be taken to prevent a duplicate solution from entering the population. Aduplicate
child is one such that its solution structure is identical to any one of the solution structures in
the population. Allowing duplicate solutions to exist in the population may be undesirable
because a population could come to consist of all identical solutions, thus severely limiting
the ability of the GA to generate new solutions.

The ranking replacement scheme may be effective in improving both the feasibility and
the quality of the solutions. To see this, we refer back to figure 2. Figure 2 shows that in
order for the GA to evolve good feasible solutions, the initial solutions (denoted by the points
on the plot) should move towards the optimal solution (which lies on the fitness axis) as
the GA progresses. Any new improved child solutions will eliminate other solutions in the
population with high unfitness (subgroupsG1 andG2) via the ranking replacement scheme.
The overall effect is to shift the population appropriately. This can be seen in figure 3
where we predict convergence under different replacement schemes, ranking replacement,
worst-fitness replacement and worst-unfitness replacement.

Figure 3. Predicted convergence under different replacement schemes.
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Figure 4. Ranking replacement: population characteristics.

We should stress here that although the idea of ranking replacement is being presented
in the context of the SPP it is directly applicable toanyGA for constrained problems that
makes use of separate fitness and unfitness scores.

4.5.2. An example problem.It is instructive to examine whether the predicted convergence
shown in figure 3 occurs in practice. Figure 5 shows the population (with a population of
size 100) at different stages of the GA for test problemAA02 (see Section 5) using the
ranking replacement method. The intersection between the dotted line and the fitness axis
is where the optimal solution (known from other work for this test problem) lies. In the initial
population (at iteration 0) the points are scattered. As the GA progresses, the points begin
to converge and move towards the fitness axis. In the last plot (at iteration 50,000) the points
are clustered near the optimal solution. The results are very close to ideal performance.

Figure 4 shows how the number of feasible members of the population (i.e., with unfitness
zero) and the average unfitness value changes over the course of the GA shown in figure 5.
It is clear that the behaviour shown is highly desirable, with the number of feasible members
increasing, and the average unfitness decreasing, as the GA proceeds.

To see how the choice of different replacement strategies can affect the performance of the
GA, compare figure 5 with the corresponding figures for worst-fitness replacement (figure 6)
and worst-unfitness replacement (figure 7). In figure 6, replacing the member with the worst
fitness score at each iteration causes the population to converge to only infeasible solutions.
In figure 7, replacing the member with the worst-unfitness fares better, finding feasible
solutions but converging prematurely to poor sub-optimal solutions.
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Figure 5. Convergence using the ranking replacement method.
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Figure 6. Convergence using the worst-fitness replacement method.
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Figure 7. Convergence using the worst-unfitness replacement method.
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Figures 5, 6 and 7 correspond to the predicted behaviour shown in figure 3 and demon-
strate that the choice of which replacement strategy to use can dramatically affect the
outcome of a GA.

4.5.3. Penalty term. One question that can be asked is whether the ranking replacement
scheme is really just equivalent to using a linear penalty termfitness+ λ(unfitness), but
with theλ not predetermined but deduced from the population in some way. We present a
simple counter-example to prove that this is not so.

Letting (fitness, unfitness) represent the fitness and unfitness scores of a solution suppose
we have a child (10, 10) and three members in the population, namely: (20, 80), hence inG1

see figure 2; (5, 100), hence inG2; and (100, 5), hence inG3. Under ranking replacement
(20, 80) inG1 will be chosen for replacement.

In order for (20, 80) to be chosen for replacement under a linear penalty term scheme
there must exist aλ ≥ 0 such that 20+ 80λ ≥ 5+ 100λ and 20+ 80λ ≥ 100+ 5λ (recall
here that we are attempting to minimise both fitness and unfitness). Simple algebra reveals
thatλ needs to satisfyλ ≤ 0.75 andλ ≥ 1.067, which is clearly impossible. Hence, ranking
replacement is not equivalent to using a linear penalty term scheme.

4.5.4. Related work. There have been a number of papers presented in the literature in
which, as in this paper with fitness and unfitness scores, GA solutions have more than one
value associated with them and these values are used in a population replacement scheme.
The majority of these papers concernunconstrained multiobjective problems.

In such problems there areM functions, F1, F2, . . . , FM , (each of which should be
minimised) and each GA solutionk then has a vector of values{F1[k], F2[k], . . . , FM [k]}
associated with it. The goal is to constructPareto-optimalsolutions. Within a known
populationP of size N a solutionk is Pareto-optimal if there existsm(1≤m≤M) such
that {Fm[k]< Fm[ p] ∀p∈P − k} and {Fj [k]≤ Fj [ p] j = 1, . . . ,M ∀p∈P − k} i.e., a
solutionk is Pareto-optimal if it is better than all other solutions in the population for one
of the M functions and at least as good for the other functions.

Note the difference between an unconstrained multiobjective problem and a single ob-
jective constrained problem such as the SPP considered in this paper. In an unconstrained
multiobjective problem all solutions are valid in terms of the original problem, some are just
better than others. In a single objective constrained problem only solutions which satisfy
the constraints (i.e., are feasible) are valid.

Schaffer (1985), based on his doctoral thesis (Schaffer (1984)), presented a vector eval-
uated genetic algorithm (VEGA) for unconstrained multiobjective problems. In his GA
(a generational approach) an “intermediate generation” is first constructed. This interme-
diate generation containsM subgroups, each of equal sizeG= N/M . Each subgroup
m(1≤ m ≤ M) contains the solutions in the population which have theG smallest values
of Fm. The usual genetic operators of crossover and mutation are applied to this intermedi-
ate generation to produce a new generation. See also Goldberg (1989) for a discussion of
this work.

Horn, Nafpliotis, and Goldberg (1994) presented a niched Pareto GA for unconstrained
multiobjective problems utilising some suggestions of Goldberg (1989). In their GA the
parent selection mechanism is modified to reflect the mutiobjective nature of the problem
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and fitness sharing (Deb and Goldberg (1989), Goldberg, Deb, and Horn (1992), Goldberg
and Richardson (1987), Oei, Goldberg and Chang (1991)) is used. Similar approaches have
also been explored by Fonseca and Fleming (1993) and Horn and Nafpliotis (1993).

Richardson et al (1989) briefly suggested that it should be possible to apply both VEGA
and Pareto-optimal approaches to constrained problems. As far as we are aware the only
work done in this direction has been done by Surry, Radcliffe, and Boyd (1995) who con-
sidered a constrained single objective problem that arises in gas pipeline design. They
presented a GA approach to the problem based upon a method they call COMOGA, denot-
ing Constrained Optimisation by Multi-Objective Genetic Algorithms, which draws on a
number of the ideas considered above for unconstrained multiobjective problems.

In COMOGA each individual, as in this paper, has two values: an objective function value
and a value summarising constraint violations based upon Pareto-ranking the individual’s
constraint violations against the population using the ranking technique of Fonseca and
Fleming (1993). COMOGA is a generational GA where parents are selected by the standard
binary tournament scheme (Goldberg (1989)), each tournament that is held being based on
the objective function value with probabilitypcost, otherwise being based on the Pareto-rank
value. Such an approach is similar (but not identical) to the VEGA approach of Schaffer
(1985) applied to a problem with two objectives but with different-sized “intermediate
generations” for each objective. In COMOGA the parameterpcost is varied from generation
to generation in order to attempt to achieve a target proportion of feasible solutions in the
population.

4.6. Population size and initial population

A population size ofN= 100 was used. Limited computational experience indicted that the
quality of the solution is not very sensitive to the size of the population. The initial population
was generated in a heuristic (pseudo-random) manner. The algorithm for generating an
initial population is described in Algorithm 2.

Algorithm 2 Initialise the populationP(0) for the SPP

1: for k= 1 to N do
2: setSk := ∅; setU := I ;
3: repeat
4: randomly select a rowi ∈ U ;
5: randomly select a columnj ∈ αi such thatβ j ∩ (I −U ) = ∅;
6: if j existsthen
7: setSk← Sk + j ; setU←U − i, ∀i ∈ β j ;
8: else
9: setU←U − i ;

10: end if
11: until U = ∅.
12: end for
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The heuristic used here to generate an initial solution is a generalisation of the ADD
heuristic used in the heuristic improvement operator described in Algorithm 1. For each
uncovered row (step 4), the idea is to find a column that can cover that row without over-
covering other rows (step 5). If such a column is found, the column is added to the solution
(step 7). If no such column is found, then that row is left uncovered (step 9) and the
procedure is repeated (steps 3–11) for another uncovered row yet to be examined until all
rows have been checked. The “random” strategy we employed here (steps 4 and 5) in
picking rows and columns for consideration is adopted to avoid bias towards any particular
rows or columns.

4.7. Algorithmic summary

Our GA for the SPP is summarised in Algorithm 3. Note that the GA cannot guarantee
to return a feasible solution. If no feasible solution has been found when the maximum
allowed iteration is reached, the solution with the lowest unfitness score is returned.

There are many significant differences between our GA for the SPP (as summarised in
Algorithm 3) and the GA for the SPP presented by Levine (1994), for example in our use
of separate fitness/unfitness scores and ranking replacement. Even where similarities exist
between our work and his, differences remain.

For example in steps 10–12 we discard any duplicate children. Levine also found it
beneficial to avoid duplicates, however in contrast to the approach adopted in this paper
he mutated a duplicate until it was distinct from the population. We, in step 9, apply the
heuristic improvement operator to each newly generated child at each iteration. Levine
applied a (different) heuristic improvement operator to a single randomly selected member
of the population at each iteration.

Algorithm 3 A GA for the SPP

1: set the iteration countert := 0;
2: initialise the populationP(t) := {S1, . . . , SN}, Si ∈ {0, 1}n;
3: evaluateP(t) : { f (S1), u(S1)}, . . . , { f (SN), u(SN)};
4: find minS∈P(t),u(S)=0{ f (S)} or minS∈P(t),u(S)>0{u(S)}, and setS∗ ← S;
5: while t < tmax do
6: select{P1, P2} := 8(P(t)); / ∗8 = matching selection method∗/
7: crossoverC := Ä f (P1, P2); / ∗Ä f = uniform crossover operator∗/
8: mutateC← Äm(C,Ms,Ma, ε); / ∗Äm = static and adaptive mutation operators∗/
9: C← Äimprove(C); / ∗Äimprove = heuristic improvement operator∗/

10: if C ≡ anyS∈ P(t) then / ∗ C is a duplicate of a member of the population∗/
11: discardC and go to 6;
12: end if
13: evaluatef (C), u(C);
14: find aS′ ∈ P(t) using ranking replacement and replaceS′ ← C; /∗ steady-state

replacement∗/
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15: if (u(C) = u(S∗) = 0 and f (C) < f (S∗)) or (u(S∗) > 0 andu(C) < u(S∗)) then
16: S∗ ← C;
17: end if /∗ update best solutionS∗ found∗/
18: t ← t + 1;
19: end while
20: returnS∗, f (S∗) andu(S∗).

5. Computational study

5.1. Test problems and preprocessing

The GA presented in this paper was coded in C and run on a Silicon Graphics Indigo work-
station (R4000, 100 MHz). To test our GA, fifty-five real-world set-partitioning problems
originating from the airline industry were solved. These problems were used by Hoffman
and Padberg (1993) to test their branch-and-cut algorithm, and a subset of them were used
by Levine (1994, 1996) to test his GA. The optimal solutions of these problems are known
(see Hoffman and Padberg (1993)). For details of how to electronically obtain these test
problems see Beasley (1990, 1996), or email the messagesppinfo to o.rlibrary@ic.ac.uk
or see the WWW addresshttp://mscmga.ms.ic.ac.uk/jeb/orlib/sppinfo.html.

Because of the special structures of the SPPs associated with these airline problems, it
is often possible to reduce the size of the problems by applying some logical rules. This
“preprocessing” of the data will not only reduce the memory requirement burden for some
problems of very large-scale, it can also make the optimisation task considerably easier
(i.e., having less variables and constraints to consider).

Here we briefly list several reduction procedures (Garfinkel and Nemhauser (1972),
Hoffman and Padberg (1993)). Some of the procedures, namely Reductions 1 and 2, seem
obvious and trivial to apply, but we mention them because we found them to be very useful
for these test problems.

Reduction 1: If β j =βk for any pair of( j, k) ∈ J, j 6= k and ifcj ≤ ck, then delete column
k (i.e., columnk is a duplicate column).

Reduction 2: If |αi | =1, i ∈ I , then the columnj in αi must be in the optimal solution
(xj = 1). Deletej and all rowsk ∈ β j , as well as all columns inαk, k ∈ β j .

Reduction 3: If αi ⊆ αk for any pair of(i, k) ∈ I , i 6= k, then delete all columnsj ∈
(αk − αi ) and rowk. This reduction follows because any column that covers rowi also
covers rowk.

Reduction 4: If |αi − (αi ∩αk)| = |αk− (αi ∩αk)| =1 for any pair of(i, k) ∈ I , i 6= k, then
let column j =αi − (αi ∩ αk) and columnp=αk − (αi ∩ αk).

1. If β j ∩ βp=∅, then columnsj and p are merged into a single column having a cost
cj + cp. Delete rowk.

2. If β j ∩ βp 6= ∅, then delete columnsj and p. Delete rowk.

Reduction 5: (a new procedure): For eachj ∈ J, supposexj = 1, thenxk= 0, ∀k ∈ T =
({∪i∈β j αi } − j ). If U ={i | αi ⊆ T, i ∈ I − β j } 6= ∅, then the problem is infeasible
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(since rowi ∈ U cannot be covered). Therefore, we can deduce thatxj cannot have the
value one. Soxj must be zero and hence columnj can be deleted from the problem since
no feasible solution can contain columnj .

Collectively we refer to these procedures as PREP. Reduction 5 (a new reduction pro-
cedure) is particularly helpful to the GA since it can reduce the chance that the GA may
converge into infeasible solutions. These reduction procedures are applied to the original
problem repeatedly until no further reduction can be achieved. The original problem sizes,
the reduced problem sizes given by Hoffman and Padberg (1993) and the reduced problem
sizes using PREP are given in Table 1. The first column of Table 1 gives the name of the test
problems, which are categorised into four sets (with different characteristics) according to
the prefix:NW, AA, US andKL. The characteristics of these problems are given by number
of rows, number of columns, and density (percentage of ones in theai j matrix). Table 1
shows that by using PREP, we were able to reduce the problems to smaller sizes than those
reported by Hoffman and Padberg for most of the problems. Note also here that substantial
problem reductions can occur, much larger reductions then would be expected for randomly
generated problems. The computational effort required to carry out these reductions was
reasonable, ranging from a few seconds for small problems up to less than an hour for the
largest-sized problem.

5.2. Computational results

In our computational study, 10 trials of the GA heuristic (each with a different random seed)
were generated for each of the 55 test problems (after PREP reductions, see Section 5.1).
Each trial terminated whentmax= 100, 000 non-duplicate children had been generated. The
default parameter settings for all problems were population sizeN= 100, static mutation
rateMs= 3 and adaptive mutation rateMa= 5. To compare the results against the traditional
operational research method, we used theCPLEXMixed Integer solver, Version 3.0 (with all
the default settings) to solve the problems to optimality. Computational results are shown
in Tables 2 and 3.

In Table 2 we give, for each problem:

• the LP optimal value using theCPLEX LP solver,
• the integer optimal value from Hoffman and Padberg (1993),
• the best GA solution value for each of the 10 trials,

In Table 3 we give, for each problem:

• the best solution reported by Levine (1994) (over all trials),
• the best solution found by our GA (over all trials),
• over the 10 trials the average percentage deviation (σ ) from integer optimal of the best

GA solution value,
• over the 10 trials the average number of feasible (non-duplicate) children generated,
• over the 10 trials the average solution time (in CPU seconds), which is the time that the

GA takes to first reach the final best solution,
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Table 1. SPP test problems details and reduction comparison.

Original Hoffman & Padberg PREP

Problem Rows Columns Density Rows Columns Density Rows Columns Density

NW01 135 51975 5.86 135 50069 5.87 135 49903 5.87

NW02 145 87879 5.66 145 85258 5.68 145 85256 5.68

NW03 59 43749 14.13 59 38964 14.12 53 38956 15.45

NW04 36 87482 20.22 36 46190 20.20 35 46189 20.49

NW05 71 288507 10.06 71 202603 10.07 62 202594 11.35

NW06 50 6774 18.17 50 5977 18.27 38 5956 19.81

NW07 36 5172 22.12 36 3108 21.86 34 3105 22.71

NW08 24 434 22.39 34 356 22.36 21 352 25.55

NW09 40 3103 16.20 40 2305 16.05 38 2301 16.64

NW10 24 853 21.18 24 659 21.25 21 655 23.34

NW11 39 8820 16.64 39 6488 16.81 34 6482 18.75

NW12 27 626 20.00 27 454 19.06 25 451 14.66

NW13 51 16043 12.78 51 10905 12.57 50 10903 12.68

NW14 73 123409 10.04 73 95178 10.11 70 95172 10.44

NW15 31 467 19.55 29 463 21.00 29 405 20.56

NW16 139 148633 7.27 139 138951 7.23 135 138947 7.39

NW17 61 118607 13.96 61 78186 13.96 54 78179 15.34

NW18 124 10757 6.82 124 8460 6.83 110 8439 6.96

NW19 40 2879 21.88 40 2145 21.59 32 2134 21.92

NW20 22 685 24.70 22 566 25.00 22 536 25.00

NW21 25 577 24.89 25 426 24.33 25 421 24.32

NW22 23 619 23.87 23 531 24.10 23 520 24.09

NW23 19 711 24.80 18 473 24.87 18 423 24.38

NW24 19 1366 33.20 19 925 33.19 19 926 33.22

NW25 20 1217 30.16 20 844 30.15 20 844 30.15

NW26 23 771 23.77 18 473 23.12 21 464 25.02

NW27 22 1355 31.55 22 926 30.76 22 817 30.22

NW28 18 1210 39.27 18 825 38.43 18 580 35.95

NW29 18 2540 31.04 18 2034 30.99 18 2034 30.99

NW30 26 2653 29.63 26 1884 29.80 26 1877 29.78

NW31 26 2662 28.86 26 1823 29.21 26 1728 28.86

NW32 19 294 24.30 18 251 25.81 18 251 25.81

NW33 23 3068 30.76 23 2415 30.75 23 2308 30.47

NW34 20 899 28.06 20 750 28.16 20 718 27.70

NW35 23 1709 26.70 23 1403 27.02 23 1132 26.32

NW36 20 1783 36.90 20 1408 36.14 20 1204 35.17

(Continued on next page.)
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Table 1. (Continued).

NW37 19 770 25.83 19 639 25.89 19 639 25.89

NW38 23 1220 32.33 23 911 31.44 21 690 33.45

NW39 25 677 26.55 25 567 26.25 25 565 26.28

NW40 19 404 26.95 19 336 26.83 19 336 26.86

NW41 17 197 22.10 17 177 22.27 17 177 22.33

NW42 23 1079 26.33 23 895 26.05 23 795 25.92

NW43 18 1072 25.18 17 982 26.43 17 982 26.43

AA01 823 8904 1.00 607 7532 1.00 605 7399 1.03

AA02 531 5198 1.32 360 3846 1.54 360 3837 1.54

AA03 825 8627 1.00 537 6694 1.32 536 6657 1.13

AA04 426 7195 1.70 342 6122 1.80 342 6118 1.80

AA05 801 8308 0.99 521 6235 1.12 520 6206 1.12

AA06 646 7292 1.10 488 5862 1.21 485 5807 1.22

US01 145 1053137 9.10 90 370642 9.80 86 351018 10.47

US02 100 13635 14.13 45 9022 16.57 45 4617 14.82

US03 77 85552 18.40 53 27084 21.42 50 20171 20.10

US04 163 28016 6.52 112 6564 7.48 91 3732 8.45

KL01 55 7479 13.67 50 5957 13.47 47 5915 13.44

KL02 71 36699 8.16 69 16542 8.34 69 16542 8.34

• over the 10 trials the average execution time (in CPU seconds), which is the time that the
GA takes to generate 100,000 non-duplicate child solutions,
• the best solution found usingCPLEX,
• the number of nodes searched byCPLEX in its branch-and-bound search tree,
• the total running time (in CPU seconds) forCPLEX.

Examining these tables, we observe that:

1. The GA is able to find at least one feasible solution for all but four problems (NW01,
AA01, AA03 andAA05). In fact, in 43 out of the 55 problems the GA is able to
find the optimal solution in at least one trial. The consistency of this performance is
demonstrated in 34 problems, in which the optimal solution is obtained ineverytrial.

2. Comparison with the results reported by Levine (1994) is difficult as the results for his
parallel GA using an island model vary according to the number of subpopulations.
Moreover, he only attempted a subset of 40 of the 55 test problems solved in this
paper. The figures shown in Table 3 are the best solutions found by Levine across eight
different values for the number of subpopulations (each run of his GA was also for
100,000 iterations). It is clear that the solution provided by our GA isin all casesat least
as good as the solution found by Levine. This isclear evidencethat our GA outperforms
the GA presented by Levine.
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(Continued on next page.)

Table 2. Computational results for test problems.

LP Integer
Problem optimal optimal Best GA solution in each of the 10 trials

NW01 114852.0 114852 n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f

NW02 105444.0 105444 109368 109125 109560 109713 108816 109443 110184 110148 109677 110151

NW03 24447.0 24492 25095 24510 o 24495 24561 o 26448 24501 25086 25785

NW04 16310.7 16862 o 16876 16986 16970 16970 o 16970 o 17004 o

NW05 132878.0 132878 138150 138890 138878 138330 138636 138240 138888 137602 134170 135780

NW06 7640.0 7810 o o o o o o o o o o

NW07 5476.0 5476 o o o o o o o o o o

NW08 35894.0 35894 o o o o o o o o o o

NW09 67760.0 67760 o o o o o o o o o o

NW10 68271.0 68271 o o o o o o o o o o

NW11 116254.5 116256 o o o o o 117585 o o o o

NW12 14118.0 14118 o o o o o o o o o o

NW13 50132.0 50146 o 50650 50152 o 50152 o 50332 50164 50152 50158

NW14 61844.0 61844 62532 62356 62724 62304 62696 62388 62918 62932 62262 62532

NW15 67743.0 67743 o o o o o o o o o o

NW16 1181590.0 1181590 o o o o o o o o o o

NW17 10875.7 11115 o 11133 o 11196 11133 o o o o 11133

NW18 338864.3 340160 363820 345762 359160 345130 365398 358484 357646 359148 358550 385596

NW19 10898.0 10898 o o o o o o o o o o

NW20 16626.0 16812 o o o o o o o o o o

NW21 7380.0 7408 o o o o o o o o o o

NW22 6942.0 6984 o o o o o o o o o o

NW23 12317.0 12534 o o o o o o o o o o
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Table 2. (Continued).

NW24 5843.0 6314 o o o o o o o o o o

NW25 5852.0 5960 o o o o o o o o o o

NW26 6743.0 6796 o o o o o o o o o o

NW27 9877.5 9933 o o o o o o o o o o

NW28 8169.0 8298 o o o o o o o o o o

NW29 4185.3 4274 o o o o o o o o o o

NW30 3726.8 3942 o o o o o o o o o o

NW31 7980.0 8038 o o o o o o o o o o

NW32 14570.0 14877 o o o o o o o o o o

NW33 6484.0 6678 o 6724 o o o o o o o o

NW34 10453.5 10488 o o o o o o o o o o

NW35 7206.0 7216 o o o o o o o o o o

NW36 7260.0 7314 o o o o o o o 7322 o o

NW37 9961.5 10068 o o o o o o o o o o

NW38 5553.0 5558 o o o o o o o o o o

NW39 9868.5 10080 o o o o o o o o o o

NW40 10658.3 10809 o o o o o o o o o o

NW41 10972.5 11307 o o o o o o o o o o

NW42 7485.0 7656 o o o o o o o o o o

NW43 8897.0 8904 o o o o o o o o o o

AA01 55535.4 56138 n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f

AA02 30494.0 30494 30601 30704 30500 30639 31161 31616 30726 32165 31056 30601

AA03 49616.4 49649 n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f

(Continued on next page.)
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Table 2. (Continued).

AA04 25877.6 26402 30115 28261 29779 28397 28585 29440 28442 28986 29791 29400

AA05 53735.9 53839 n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f

AA06 26977.2 27040 27932 28060 28118 28048 28022 28004 28608 28500 28355 27883

US01 9949.5 10022 12627 12317 11614 12237 10557 11640 11144 11875 11496 10921

US02 5965.0 5965 o o o o o o o o o o

US03 5338.0 5338 o o o o o o o o o o

US04 17731.7 17854 o o o o o o o o o o

KL01 1084.0 1086 1088 o o o 1088 o o 1090 o o

KL02 215.3 219 o 220 o 220 226 o 220 220 o 220

o = optimal solution value.
n/f = no feasible solution found.
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Table 3. Performance comparison of our GA versus Levine andCPLEX.

GA
CPLEX

Levine Avg. no. of Average Average
best Best Avg. feasible soln’s solution execution Best No. of Solution

Problem solution solution %σ generated time time solution nodes time

NW01 n/a n/f n/a 0 n/a 10435.9 o 0 127.4

NW02 n/a 108816 3.96 24703 15132.0 19392.4 o 0 143.6

NW03 25671 o 1.86 100000 2782.0 6398.9 o 2 27.1

NW04 n/a o 0.36 52446 3458.6 8700.2 o 997 850.2

NW05 n/a 134170 3.67 100000 24914.5 42391.9 − − −
NW06 o o 0 100000 326.4 1030.6 o 16 6.6

NW07 o o 0 100000 47.6 442.6 o 0 1.2

NW08 o o 0 100000 0.7 99.9 o 0 0.1

NW09 o o 0 100000 14.2 369.0 o 0 0.7

NW10 n/f o 0 100000 1.8 132.9 o 0 0.2

NW11 n/f o 0.11 100000 69.8 905.3 o 1 2.5

NW12 o o 0 100000 3.5 74.6 o 0 0.1

NW13 n/a o 0.15 100000 389.4 1187.9 o 9 5.9

NW14 n/a 62262 1.16 100000 9782.0 20072.6 o 0 102.3

NW15 o o 0 1802 1.4 101.1 o 0 0.1

NW16 n/a o 0 100000 11810.5 116675.7 o 0 340.2

NW17 n/a o 0.12 100000 5650.7 13999.1 o 23 150.8

NW18 n/f 345130 5.79 89336 1540.8 2033.4 o 3 11.1

NW19 o o 0 100000 69.7 404.5 o 0 0.6

NW20 o o 0 85814 3.2 119.7 o 5 0.2

NW21 o o 0 95380 1.1 80.0 o 1 0.2

NW22 o o 0 49026 0.5 90.2 o 3 0.2

NW23 o o 0 19431 1.5 105.3 o 6 0.2

NW24 o o 0 99438 4.9 144.1 o 5 0.3

NW25 o o 0 100000 3.6 113.9 o 4 0.3
NW26 o o 0 52931 4.4 87.4 o 2 0.1

NW27 o o 0 81581 2.6 135.6 o 2 0.3

NW28 o o 0 74176 3.0 121.2 o 4 0.3

NW29 o o 0 54395 48.8 243.0 o 8 0.7

NW30 o o 0 72783 28.1 260.1 o 4 0.8

NW31 o o 0 73493 42.2 261.1 o 4 0.7

NW32 o o 0 100000 1.9 56.3 o 18 0.2

NW33 o o 0.07 63661 5.5 315.5 o 2 0.7

NW34 o o 0 69252 2.2 141.6 o 1 0.2

(Continued on next page.)
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Table 3. (Continued).

NW35 o o 0 36175 4.5 178.3 o 2 0.4

NW36 o o 0.01 11016 46.2 212.3 o 32 1.8

NW37 o o 0 99094 2.3 108.0 o 2 0.2

NW38 o o 0 33348 6.7 132.4 o 2 0.3

NW39 o o 0 84923 1.1 106.7 o 4 0.2

NW40 o o 0 100000 1.4 68.8 o 5 0.1

NW41 o o 0 100000 0.9 44.7 o 2 0.1

NW42 o o 0 15498 16.3 163.6 o 6 0.4

NW43 o o 0 61399 6.5 123.2 o 1 0.2

AA01 n/f n/f n/a 0 n/a 3101.3 o 2373 10109.3

AA02 n/a 30500 1.58 5105 1145.4 1567.4 o 0 63.4

AA03 n/a n/f n/a 0 n/a 2810.3 o 12 341.2

AA04 n/f 28261 10.29 14854 1731.7 1890.4 26521 3645 6923.2

AA05 n/f n/f n/a 0 n/a 2670.1 o 136 276.3

AA06 n/a 27883 4.12 15651 2114.8 2439.4 o 40 209.5

US01 n/a 10557 16.17 12814 43683.5 74728.4 — — —

US02 n/a o 0 44522 76.8 667.0 o 0 6.5

US03 n/a o 0 27197 1350.2 3859.5 o 0 27.5

US04 n/a o 0 20528 135.1 789.7 o 8 13.6

KL01 1095 o 0.07 32601 159.6 909.9 o 66 10.7

KL02 220 o 0.55 20288 485.7 2099.7 o 95 66.5

o = optimal solution value.
n/f = no feasible solution found.
— = see text for discussion.
n/a= not available.

3. The GA is capable of generating a large percentage of child solutions that are feasible
for many problems. This indicates that the heuristic improvement operator is effective
in constructing feasible solutions.

4. The problems (particularly theAAproblems) with low density are generally more difficult
for the GA in terms of its ability to generate feasible solutions. The GA failed to find
any feasible solution in three out of sixAA problems. The difficulty of theAA problems
is largely due to the relative large number of rows (constraints) compared with other
problems. TheAA problems were also found to be more difficult using theCPLEX solver
in terms of the number of nodes searched and the running time.

5. TheCPLEX mixed integer solver finds optimal solutions for all the problems except
NW05, US01 andAA04. For CPLEX many of the smaller problems are fairly easy to
solve, with the integer optimal solution being found after only a small branch-and-bound
tree search (indicated by the number of nodes searched). What makes these problems
easy forCPLEX is that the number of integer values in the LP relaxation solution is
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relatively high and the gap between the LP lower bound and the optimal value is relatively
small (compare the LP and the integer optimal values in Table 2).CPLEX was unable to
obtain any solution forNW05 andUS01 because their memory requirements exceeded
the memory capacity (48 MB) of our machine. ForAA04, a feasible solution was found
before the memory was exhausted.

5.3. Experimentation with other settings

5.3.1. Replacement strategy.Other computational experience showed that the feasibility
of the solution could be improved for the difficultAA problems if a different replacement
strategy was used. The convergence behaviour of the GA using worst-unfitness replace-
ment, shown in figure 7, suggests that feasible solutions may be found more easily if this
replacement strategy, rather than the ranking replacement strategy, is used even though
it is likely to converge prematurely to poor-quality feasible solutions. To investigate this
we experimented with the GA using worst-unfitness replacement on the six difficultAA
problems. The results are shown in Table 4.

Comparing these results with those in Tables 2 and 3, we observe a marked improvement
in the number of feasible solutions generated when the worst-unfitness replacement method
is used. Feasible solution were found for problemsAA03 andAA05 in all trials. But
AA01 remains intractable, although we observed that the average best unfitness value was
significantly reduced from 13 in ranking replacement to 3 in worst-unfitness replacement.
This result seems to suggest that feasible, or near feasible, children are more likely to
be generated from feasible, or near feasible parents. If this hypothesis is true, then in
cases where feasible solutions are harder to find, the priority should be to focus the search
on feasible solutions (i.e., by decreasing the average unfitness of the population). Once
one feasible solution is found, it would be easier to find others. However, it is also not
surprising to see that, for the problems for which both replacement methods always find
feasible solutions (AA02, AA04 andAA06), the quality of the solutions obtained by using
the worst-unfitness replacement method are inferior to those obtained by using the ranking
replacement method.

Table 4. Results of the GA using worst-unfitness replacement.

Average no.
of feasible

Average solutions
Problem Best GA solution in each of the 10 trials %σ generated

AA01 n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f n/a 0

AA02 34428 33811 33522 32377 32914 32702 32630 33294 36398 32748 9.80 12058

AA03 57438 62395 58567 53822 57978 57721 56255 54932 51098 57671 14.38 4751

AA04 35758 35199 35869 32279 30454 31853 32597 33261 32334 33990 26.35 19211

AA05 58110 58969 64168 61277 56328 57685 59654 57379 59418 56175 9.43 3849

AA06 30355 32589 32165 32202 32090 31217 30891 29896 29255 30254 14.98 20154

n/f = no feasible solution found.
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Table 5. Performance comparison of different crossover operators.

Average %σ

Problem Uniform One-point Two-point OR

NW11 0.11 0.20 0.44 0

NW13 0.15 0.80 0.73 0.80

NW18 5.79 7.15 5.30 10.20

NW33 0.07 0.13 0 0

NW36 0.01 0 0 0

AA02 1.58 3.76 2.41 1.62

AA04 10.29 13.89 12.12 10.11

KL01 0.07 0.03 0.09 0.20

KL02 0.55 0.73 1.51 1.65

Average 2.07 2.97 2.51 2.73

5.3.2. Crossover. Experimentation was carried out to compare the effectiveness of the GA
using different crossover operators. For computational reasons this was done using a subset
of nine of the problems considered in Tables 2 and 3 that are relatively difficult in terms of the
ability of the GA to consistently find optimal solutions. We compared the uniform crossover
operator, as in the results presented in Tables 2 and 3, with the restricted (Beasley and Chu
(1996)) one-point and two-point crossover operators, and the OR crossover operator (where
C[ j ]= max[P1[ j ], P2[ j ]]).

In Section 4.4 we discussed the issue of the uniform crossover operator disrupting a good
row coverage achieved by two parents chosen using matching selection. We might expect
therefore the OR operator, where the child contains a column if it is in either of the parents,
to work particularly well. This is not so as can be seen from the results given in Table 5.

On a problem by problem basis these results show no clear winner among any of these
crossover techniques. Note however that the uniform crossover operator performs best on
average.

5.3.3. GA components.We also experimented with our standard GA (as given in Algorithm
3) but with certain components omitted in an attempt to ascertain the importance of these
components. Specifically we considered the standard GA: with static mutation but no
adaptive mutation (step 8 in Algorithm 3); with no mutation (static or dynamic) at all (step
8 in Algorithm 3); and with no heuristic improvement operator (step 9 in Algorithm 3).
The results are shown in Table 6 for the same subset of test problems as were considered
in Table 5. As in Tables 2 and 3 we performed 10 trials in each case.

We also investigated whether the performance of our standard GA could be attributed
solely to our heuristic improvement operator. In order to do this we modified our standard
GA by replacing steps 6–8 in Algorithm 3 by{C←a random child}where by random child
we mean that each bit in the child has a probability ofm/n of being set to one. As for
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Table 6. Performance comparison of GA components.

Average %σ

Problem GA GA-ADMUT GA-ALLMUT GA-HEUR HEUR

NW11 0.11 0.07 0.06 −(0) 21.33

NW13 0.15 2.09 2.61 −(0) 7.57

NW18 5.79 13.03 34.91 −(0) 41.19

NW33 0.07 0.14 0.02 −(0) 5.12

NW36 0.01 0.01 0.11 −(0) 0.06

AA02 1.58 2.70(8) 5.94(2) −(0) −(0)

AA04 10.29 11.37(6) 23.05(3) −(0) −(0)

KL01 0.07 0.18 0.57 −(0) 1.77

KL02 0.55 1.46 2.65 −(0) 13.06

Average 2.07(90) 3.09(84) 6.54(75) −(0) 12.87(70)

GA: standard GA, as in Algorithm 3.
GA-ADMUT: standard GA, static mutation but no adaptive mutation.
GA-ALLMUT: standard GA, no mutation at all.
GA-HEUR: standard GA, no heuristic improvement operator.
HEUR: heuristic improvement operator only as applied to random children.

A number in brackets is the number of trials in which a feasible solution was returned. If no number
in brackets is given then all 10 trials returned a feasible solution.

the results presented in Tables 2 and 3 we performed 100,000 iterations in each trial and
performed 10 trials in all. The results are also shown in Table 6.

Table 6 clearly demonstrates that each of the components considered is necessary for
the success of our GA. In particular note that the GA-HEUR and HEUR columns in that
table indicate that whilst the heuristic improvement operator is essential for the GA to find
feasible solutions it is not sufficient in itself to account for the success of our GA.

6. Conclusions

In this paper, we have developed a heuristic for the set partitioning problem based on
genetic algorithms. Our main interest was to investigate the use of GAs for solving highly
constrained problems, in which case we chose the SPP as the input to our GA. We proposed
separate fitness and unfitness scores, an adaptive mutation scheme, a heuristic improvement
operator, a new parent selection method and a new population replacement scheme to
improve the performance of our GA. Experimental results have been presented to show
that these approaches are indeed very promising. Optimal or near-optimal solutions can be
obtained for many problems of even large size.

The heuristic improvement operator is specialised for the SPP, and although computa-
tionally expensive, it is an indispensable component and is highly effective in constructing
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feasible solutions. Of the fifty-five real-world problems we tested, only four problems
failed to obtain a feasible solution in one of ten random trials. The GAs ability to generate
feasible solutions is attributed to the special constraint handling technique we developed, in
particular, the notion of separate fitness and unfitness scores and the ranking replacement
method. These techniques are generalisable for the application of GAs to any constrained
problem.

The adaptive mutation procedure is designed to prevent the population from being trapped
in an infeasible region due to premature column convergence. Our experiments indicated
that this additional mutation procedure can significantly enhance performance. This tech-
nique is also generalisable for the application of GAs to any constrained problem.

We have presented a matching selection scheme for parent selection. This scheme at-
tempts to choose the second of the two parents so as to work towards constraint feasibility.
This technique too is generalisable for the application of GAs to any constrained problem.

A preprocessing routine was performed to reduce the size of the problem in order to
increase the computational efficiency of the GA for the SPP. Results indicated that consid-
erable reduction can be made for these real-world test problems.

Despite some very encouraging results, we conclude that our GA, in its present form, is
not competitive with the existing exact solvers, such asCPLEX, in both speed and quality
for the problems tested. However, we believe that the GA may gain more advantages in
cases when the gap between the LP relaxation value and the optimal integer value is large.
This hypothesis is based upon the relative success of GAs as demonstrated on the problems
considered in our other work (Beasley and Chu (1996), Chu (1997), Chu and Beasley
(1997, 1998)), and the fact that in those cases the effectiveness of the branch-and-bound
approach is limited due to the relative large gap between the LP and the optimal integer
values.
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